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Abstract—The paper presents an application of adaptive finite element methods to the modeling of
low-cyck continuum damage and life prediction of high-temperature components. The major objective
is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and
adaptive time-stepping methods. The damage modeling is implemented in an usual way
by embedding damage evolution in the transient nonlinear solution of clasto-viscoplastic deformation
problems, This nonlinear boundary-value problem is discretized by adaptive finite element methods.
The automated A-adaptive mesh refinements are driven by error indicators, based on selected principal
variables in the problem (stresses, nonelastic strains, damage, etc.). In the time domain, adaptive time-
stepping is used, combined with a predictor—corrector time marching algorithm. The time step selection
is controlled by required time accuracy. In order to take into account strong temperature dependency
of material parameters, the nonlinear structural solution is coupled with thermal analyses (one-way
coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in

accurate prediction of damage levels and failure time.

1. INTRODUCTION

Unified viscoplastic constitutive models have evolved
over the last 20 years to provide a means for
analytically representing a material response from the
elastic through the plastic range, including strain-rate
dependent plastic flow, creep and stress relaxation.
These theories are guided by physical considerations
including dislocation dynamics and are based on the
principles of continuum mechanics.

The first multi-dimensional formulations of elasto—
viscoplastic constitutive equations was due to Bodner
and Partom [1]. Since then, a number of constitutive
models have appeared; many of these theorics are
summarized in review articles that appear in Ref. [2]).
A NASA-Lewis Research Center sponsored research
program (HOST) [3, 4] conducted by the Southwest
Research Institute recently concluded a four year
research effort to develop unified constitutive models
for isotropic materials and to demonstrate their use-
fulness for analysis of high temperature gas turbine
engines. One result of this study is material property
data for high temperature nickel-based alloys over
a2 wide temperature range. The unified models
employed were those of Bodner—Partom and Walker.
More recently, a viscoplastic constitutive model was
developed at NASA Lewis by Freed [5] and Freed
and Verilli [6], and then refined by Freed and Walker
[7]. Relevant material constants were determined
experimentally for aluminum, copper and nickel.

Unified viscoplastic theories have been implemented
by a number of finite clement researchers. The first
use of unified constitutive models in a finite clement
program was by Newman ef al [8] Later, under
the NASA HOST program, the Bodner-Partom and
Walker models were implemented into finite element
codes by General Electric and Pratt and Whitney.
Kaufman et al. [9] describes these efforts as applied
to gas turbine components. Moreno and Jordan [10],
under the NASA HOST program, developed and
applied a unified constitutive model to gas turbine
combustors using the MARC code. Recently, a
finite clement viscoplastic study of cylindrical thrust
chambers was presented by Arya [11} Detailed studies
of several rate-dependent plasticity models and their
numerical impiementation using adaptive finite cle-
ment methods were conducted by Bass and Oden [12].
These studies were extended for thermoviscoplastic
analysis by Thornton et al. [13)

Models of material damage and reliability studies
are relatively recent developments, but significant pro-
gress has been made in understanding and modeling
these problems. The models of continuum damage
development, which are of primary interest here,
are based on micro-mechanical studies of micro-crack
nucleation and growth, discussed by Ashby and Raj
[14}, Greenwood (15] and many otber rescarchers.
Phenomenological descriptions of these models are
usually based on the carly work of Kachanov [16],
where the general evolution law was introduced for
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Fig. 1. Adaptive mesh refinements for damage modeling.
(a) resolution of distributed damage zones. (b) localization
of macro-crack initiation.

damage parameter. These models fit very well into
the framework of unified viscoplastic theories, and
several detailed evolution forms have been proposed
(see, for example, papers of Bodner and Chan [17],
Leckie and Hayhurst [18], Simo [19], and references
therein). The equations presented in these works are
convenient for the description of low-cycle damage,
where the damage occurs relatively quickly under
a general stress history. For problems with cyvclic
loads, the evolution of damage is more conveniently
expressed in terms of the number of cycles. Theories
of this type were reviewed by Nelson [20]. In high-
cycle fatigue modeling, they are computationally
more ecfficient than time integration methods. To
date, no adaptive finite element solutions have been
reported for continuum damage modeling in the
literature.

Therefore, the main objective of this study was
to prove the feasibility and practical benefits of using
adaptive finite element methods to model continuum
damage and to improve life prediction capabilities for
high-temperature components and other structures
subjected to hostile thermo-mechanical environments.

The major benefit of such an application of adaptive
methods is that the adaptive mesh refinement based
on rigorous error estimators, can provide automated
and exact resolution of critical damage zones (Fig. 1a)
and, moreover, an automated indication of possible
indication of macro-cracks (Fig. 1b). Independent of
adaptive mesh refinement, an adaptive time-stepping
method can provide automated control of the accur-
acy of time-marching procedures, and greatly minimize
the computational effort necessary to obtain a final
solution.

2. UNIFIED VISCOPLASTIC THEORIES AND
CONTINUUM DAMAGE MODELINGS

Complex mechanical behavior of many high-
temperature engineering materials can be improved
by the constitutive models known as unified elasto—
viscoplastic theories. These theories, consistent with
micro-mechanics of metallic materials, describe in a
unified manner various aspects of clastic and non-
elastic behavior of structures. More, these approaches
are readily expandable to include such effects as crack

nucleation, continuum damage, etc. In this study the
Bodner-Partom [1, 17] and the Freed-Walker con-
stitutive theories {S-7] were implemented for damage
modeling. It should be noted that presently there exists
a wide variety of viscoplastic constitutive theories
and corresponding damage modeis. However, the
primary objective of this paper is not to study these
models, but to develop and demonstrate adaptive
finite element techniques in application to damage
modeling. Hence the above two constitutive theories
were implemented in this study. Importantly, the
adaptive finite element techniques developed herein
is applicable to a much wider class of continuum
damage models. '

2.1. Basic formulations

The internal-state-variable constitutive formulations
are to be used in the solution of infinitesimal, quasi-
static, isothermal, initial-boundary-value problems.
Consider a viscoplastic structure occupying a region
Q with boundary Q. The behavior of the structure
is described by the following system of differential
equations:

(1) Equilibrium in rate form:
Gy +5,=0, (N

where o, denote components of the stress
tensor, b, are the body force components per
unit volume, and the summation convention is
employed.

(2) Kinematic relation for velocity gradients:

éymey+ &g = (i, +4,,)/2, 2)

where ¢, denotes the total strain components

and superscripts E and P denote elastic and

inelastic strain components, respectively. The

components of the displacement rates are ;.
(3) Constitutive relations:

dy=Ep el — EgayT
¢y=fy(oy.Z,) (no sum) 3
zl = gl(’w zk)! (no m)

where E,; represent Hooke's tensor of elasticity
parameters, a;; are components of a tensor of
thermal expansion parameters, and T represents
the rate of the change in temperature. Both E,
and ay, are temperature dependent. The consti-
tutive functions are f, and g, where Z, represent
internal state variables. These functions and
state variables characterize the viscoplastic
response of the material.

The description of the problem is completed by
prescribing the boundary and initial conditions,
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d,n,=&;on 60,,}

where 80 =00, U g, %, are prescribed surface
displacement rates, s, the components of a unit
normal vector, and ‘8, the prescribed surface traction
rates. The initial conditions include specifying the dis-
placements, stresses, and internal state variables, i.c.

(4)

u(x,0), 04(x,0), Z,(x,0) x€eQ &)

2.2. Contimuaum damage models

The continuum damage modeling describes the
deterioration of mechanical properties of materials
by development of intergrain cracks and voids.
According to material science theories presented, for
example, by Ashby and Raj{14] or Greenwood [15),
the growth of damage at grain boundaries is expressed
in terms of two mechanisms: nucleation and growth,
The damage parameter e is then introduced, and can
be interpreted as the ratio of damaged cross section
(A,o4) (or, alternatively, volume) to the original area

(Amln-l ):

©)

The micro-cracks considered here are in the range
of 0.0l mm in length. The rupture criterion is » =1,
which corresponds to the saturation of the material
with voids. Alternatively, a single crack may grow
to a size on the order of 1 mm. In the latter case,
the crack is too big to be treated in a continuum
sense, and its propagation should be followed using
the methods of fracture mechanics.

Continuum damage modeling is easily incorporated
into the viscoplastic constitutive theories by intro-
ducing the evolution law for the damage parameter.
Usually the general Kachanov form based on
separation of variables is accepted:

o =f(@)/2(0),

where o is the stress state in the body.

More generally, other parameters can be used in
the evolution law. Moreover, the damage parameter
is often decomposed into isotropic and anisotropic
components. Within this class, two low-cycle damage
models have been considered in this study based on
the Bodner and Chan {17) and Greenwood [15] models.
However, there are several problems with practical
application of directional damage, reliability of these
models and conducting experiments relevant for the
evolution of necessary parameters. Even the extensive
experiments presented in Refs. [3,4,17] did not
provide all the necessary data and, hence, the damage
model was limited to the isotropic damage. There-
fore, numerical implementation of this study was also
limited to isotropic damage.

™

Once the damage parameter o is calculated, it
should be somehow incorporated into the constitutive
theory. This is based on a straight forward interpret-
ation of the damage parameter, w, as a ratio of area
of voids in a given cross-section to the original area,
as shown in eqn (6). The result of this reduction of
area is that the real stress (¢,..) in a2 material is higher
than the nominal stress (0oa):

Au-l-l

real

Oron) = Tnom

- Au—'-l o
Assminal — Avoid -

Trom_
Tl-o)

In the Bodner-Partom theory this results in the
modification of the nonclastic strain rate equation.

®

The details of this modification can be found in [Ref.

[17]. The same principle, applied to Freed-Walker
theory [7], leads to the use of a real stress rather than
a nominal stress in the evolution equation. Therefore,
to incorporate continuum damage, the stress deviator
(Sy) in the viscoplastic model used in this study is
being replaced by:

©)

This replacement means that the stresses stored in
the program are nominal stresses, but the nonelastic
fiow rule operates on real stresses. Consequently, the
back stress B and the drag stress D in their model are
real stresses.

Sy—— (1-)s,.

3 FINITE ELEMENT SOLUTION OF VISCOPLASTIC
PROBLEMS WITH DAMAGE

The boundary-value problem described in the
previous sections is strongly nonlinear and can only
be solved by numerical techniques, such as the finite
element method. Application of this method requires
recasting of the problem in a weak, variational form.

3.1. Weak formulation

The rate form of the equilibrium equations de-
scribed earlier can be viewed as a constraint condition
on the constitutive equations. A weak formulation
of the equilibrium equations, sufficient to include
the necessary constraint condition, is developed here.
The equilibrium conditions in terms of the strain rates
are of the form

-0
(Bl —Ewau®), j+5=0,)
éf,-u“—é,’,

where

&l =fu(oy, Z,) (no sum)

2= g(0y, Z;). (no sum).

c/
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e =y -~
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éy=Epél S an

1 Ve
Zdi +2,

J0 o

Z=

where o, and Z; are understood to depend upon u,;
and to satisfy initial conditions.

In order to obtain a weak formulation of a
boundary-value problem the space of displacement
rates (solution space of trial functions) is introduced.

U={ae[W™~@Q), ¥x)—0as |x|—owo} (12)
and the space of test functions
V={ve[#~(Q)", v(x)—0as|x]|—ow}, (13)

where ) is a computational domain, N is the
dimension of the physical space (2 or 3), and #™*(Q2)
is the Sobolev space, where specific values of m, p
and g depend on the particular forms of constitutive
equations governing the material under consideration.

Multiplying the equilibrium equation by a suitably
smooth test function v, = v,(x) and integrating over
Q, the weak form of the rate equilibrium equations
can be obtained:

(14)

—y -

J.ngidﬂso fortllv,inV.
Q

After the substitution of the constitutive equations,
application of the divergence theorem and a grouping
of terms the following variational problem is obtained:

Find a displacement rate field 1 — a(x, #)in V + {i7}
such that for every ¢

Lﬂm"’m"u dQ = L Eél,dQ

N

)

+ j Eg0u0?v,AQ
Q

+J. E,v,d.0+.[ to,ds
0 o

for all v, in V. (15)

The rates of nonelastic strains ¢J, are obtained from
the rclevant constitutive theory, and the pointwise
values of rates of temperature 7' were read in from
the file created by thermal analysis program. Here
dQ and ds are volume and surface measures, & is
any function defined on Q such that its trace on the
boundary segment 39, is & (where 1,30, =-&;). It is
easily verified that any sufficiently smooth solution of
eqn (1) will also satisfy the governing equations.

Conversely, any solution of the governing equations
and boundary conditions will also satisfy eqn (15).

3.2. Finite element formulation

A finite element approximation of eqn (15) is
obtained by introducing approximations of the trial
and test functions:

N
uj(x) = ujg(x) .
233

N
vi(x) =Y vjg(x) (16)

/
. &
40, 1) = T A0 3),

where N is the number of nodes, i indicates the vector
components, ¢, is a basis function, and u}, /; and 1/(¢)
are the values of &}, v], and %} (¢) at node j at time 1,
respectively.

Recasting these approximations into a matrix form
and employing standard notation, gives the time
element approximation for @(x, ¢) at time ¢

e
AN

I BW:B&dQ=J B'Ee'dﬁ+I BEa? dQ
] Q 11

+j¢'$dn+j $%eds, (7
Q 0,

where Q denotes the clement volume, 39, denotes
an element surface where tractions are defined, and
B is the strain displacement matrix.

The temperature affects the viscoplastic structural
analysis directly in three ways: (1) the elasticity
matrix E(T) and the coefficient of thermal expansion
a(T) depend on temperature, (2) nodal Joads-¥(T)
depend on the local temperature rates (#), and (3)
scveral parameters in the viscoplastic constitutive
model are temperature dependent.

3.3. Viscoplastic solution method with damage modeling

In this section, an algorithm used for the solution
of viscoplastic problems with damage modeling is
presented. In addition to this basic algorithm, an
interface was provided for the thermal analysis,
wherein temperature histories can be read into the
structural code.

An uncoupled (sometimes called one-way coupled)
formulatoin was used for this approach, wherein
the thermal problem is solved first, followed by the
viscoplastic analysis. The transient thermal problem
is solved by time marching with a time step Aty, and
the nodal temperatures at successive times ¢,,1,,...
are obtained. These temperature vectors arc used as
input to the structural analysis.

The first computation in the structural analysis is
to solve an initial statics problem if the initial tem-
perature distribution T(x, 0) is not equal to a uniform
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reference temperature or if any initial static loads are
present. The results of this analysis are the initial con-
ditions (displacements and stresses) for the transient
viscoplastic analysis.

The viscoplastic analysis time marches with a
time step At,. Experience has shown that the time step
required for the structural analysis is usually smaller
than for the thermal analysis, i.e. AT, < Afy. At inter-
mediate times in the structural analysis, the tempera-
tures are linearly interpolated from the temperatures
known at the beginning and end of the larger thermal
time intervals.

A computationally efficient method for tracing the
solution of initial-boundary-valoe problems in visco-
plasticity, which utilize a hidden variable constitutive
formulation is described here. The strategy employed
in the viscoplastic algorithm is as follows:

With the initial distribution of stress, temperature,
and internal variable specified, nse the equilibrium
equations to obtain the nodal displacement rates.
Then integrate the constitutive equations forward in
time at the element Gauss integration points. With
updated values of the stress, temperature, and internal
variables at the new time, the equilibrium equations
are solved again. This sequence is determining the
nodal displacement rates, then advancing the consti-
tutive equations in time is continued until the desired
history of the initial-boundary-value problem has
been obtained. Thus, the algorithm proceeds through
the following steps:

(1) At time 1, =0, initialize o,, Z and o, for cach
clement.

(2) Calculate ¢} = f,(oy, Z;, ) for each element
at ¢ = ¢, {thus determining the right-hand side
of eqn (17)].

(3) Assemble and solve the equilibrimn condition
for u,(1,).

(4) Calculate ¢,(t,) = Bu,(1,) for each element.

(5) Calculate dy(r,) = E(é,(1,) — €§(s.)) — EaT'(1).

(6) Calculate Z(1,) = g/(0(1.), Zs(1.))-

(7) Calculate (4,) = fi{o(t.), 6y{t.)).

(8) Integrate d,, 2, and o, forward over some
appropriate Af, for cach clement to get

”W..n--.m.)’ z'(l-u"-ou.) and m'(‘-ol"-q»u.)'
9) If 1., = t,F At, < tgu 80 10 2, otherwise stp.

Step 8 characterizes an explicit scheme, and this
step can be replaced by a subroutine for implicit
method if needed. If predictor-corrector type inte-
gration schemes are used, a slight modification is
necessary beginning with Step 8 to be described in
Section 4.2. The computational method above has
been presented for a constant time step Af,. The com-
putational experience by several imwestigators [9, 12,
16, 21] indicates that a very small time step can be
required because of the mathematically stiff nature of
the constitutive equations describing the internal state
variables. To gain improved efficiency and reliability,
a variable time step algorithm has been implemented

in this study. This technique will be described in the
next section.

4. ADAPTIVE COMPUTATIONAL TECHNIQUES

In this study, adaptive computational techniques
were used to provide the maximum reliability of
results at the minimum computational cost. These
techniques are used to adapt their parameters to
changing characteristic of the solution during the
solution process. In this study, two basic adaptive
methods were used, namely h-adaptive mesh refine-
ment and adaptive time stepping. The basics- of
these techniques will be discussed om the following
subsections.

4.1. Error estimation and adaptive mesh refinement

Adaptive mesh refinement, based on rigorous
error estimates, enables to resolve a basic question
of modern computational mechanics: what is the
accuracy of the numerical solution? equivalently,
how good are the answers? To systematically reduce
error by adaptively changing mesh or spectral
orders of approximations, one must obviously have
some means to judge the distribution of error in a
numerical solution.

Some of the most important results related to error
estimation and adaptive techniques for finite element
methods and details of their derivations and proofs
can be found in Refs. [22-24]}. The error estimators
and indicators are the basis for adaptive mesh refine-
ments, which modify the mesh in order to minimize
the error at minimal computational cost. In this
study, interpolation error estimators combined with
h-refinement technigues have been implemented for the
solution of clasto-viscoplastic problems with damage.
The interpolation methods use the interpolation theory
of finite clements in Sobolev norms to produce rapid
(sometimes crude) estimates of the local error over
individual elements. Simplifying this somewhat gives
an error estimate defined as the maximum difference
of the effective strain within the uniom of that par-
ticular clement Q, and its neighboring clements. The
h-methods arc the mesh refinement methods, based
on local subdivision of elements into smaller clements.
An h-type refinement strategy may be outlined as
follows [11}:

-

(1) Given a solution at time ¢*, solve the initial- -

boundary-value problem until time 7*** and calculate
the estimated error for each element The interval
t"*1 — ¢* is much larger than the time marching step
At

(2) Determine the magnitude of the largest elemental
error E,,,, and set a threshold value for refinement
aF,.,, where x is a fraction between zexo and one.

(3) Determine the number of clements to be refined
using the threshold value. If this number of clements
is greater than SN, where N, is the number of ele-
ments and f is a fraction between zero and one, a
uniform distribution of error exists and no refinement
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is made (go to Step 1). Otherwise, refine all elements
for which E, > aF,,,, where E, is the error for a
typical element k in the mesh.

(4) If refinement has occurred, go back to time ¢,
interpolate the solution on a new mesh, and resolve
the boundary value problem on the new mesh. Then
again estimate the clemental error at time **!,

(5) If element errors exist such that E, > aE_,, go
to Step 3. Otherwise the errors have been reduced
sufficiently, go to Step 1 with a new refined mesh, and
new starting time *+!,

It is quite essential for the accuracy of the solution

that after mesh refinement at time #*+! the solution
process is backed to the time ¢*. This assured that the
interval ¢"—¢"*! is covered on adequately refined
mesh, so there is no excessive accumulation of error.

4.2. Adaptive time stepping techniques

Time-dependent problems are usually solved by
time marching techniques, where the time domain is
discretized into a number of steps 1,,1;,...,1, and
the solution proceeds by solution of a sequence of
incremental problems. In the simplest algorithms,
the time step interval is kept constant throughout
the whole computational process. In most practical
applications, a fixed time step leads to relatively
inefficient solutions, and adaptive adjustments of Az
are very desirable. In this section, an adaptive time-
stepping technique for thermo—viscoplastic structural
analysis with damages is described.

For simplicity, consider the single ordinary differ-
ential equation,

y=f(n1) (18)

The solution is advanced using a predictor—
corrector scheme. The predictor phase consists of an
Euler step:

}'f+u‘)’.+AU‘. (19)
f‘:’+u’fé§:’+m' + Ar). (20)

An error indicator E[12,22] is then computed
from

18568 =5

E
zLVl’-u:l

@n

The error indicator is next compared with a preset
error criterion and if the criterion is met, the timestep
is small enough to proceed to the corrector stage.
Otherwise, the predictor phase for eqs (18)—(21) is
repeated with a smaller time step. On the other hand,
if the error is smaller than the user-defined value E_,
the time step is increased to improve computational
efficiency. For the viscoplastic evolution equations
with damage, the control variables used to calculate
the error indicator were the components of a stress
tensor o, internal state variables Z,, and the damage

J. B. Min et al.
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Fig. 2. Adaptive timestepping algorithm for viscoelasto-
plastic evolution problems.

variables w);, with the maximum of these components
selected as the controlling error. The corrector phase
is the modified Newton scheme,

y."g(j, +.}.'I'+M)/2 (22)

Yorau=yi+ 8t Yoy 23
A flow chart depicting the adaptive scheme is
shown in Fig. 2.

5. NUMERICAL EXAMPLES

In this section, sclected numerical examples oriented
on verification of damage modeling and on illustration
of advantages of adaptive methods in application
to damage modeling arc presented. In particular,
discussed are: (1) & simple tension creep test with
experimental verification; (2) an isothermal structural
problem with adaptive mesh refinement; (3) a thermo-
structural problem corresponding to the space shuttle
main engine (SSME) combustion chamber liner.

5.1. Tensile creep test

The main purpose of this example is to verify the
viscoplastic constitutive model and damage modeling
by comparison of numerical predictions with avail-
able experimental data [17]. The example is a tensile
creep test of nickel superalloy B1900 + Hf subjected
to constant stress level of 215 MPa and temperature
of 982°C. For this case, both tertiary creep corre-
sponding to continuum damage and final rupture
of the specimen were observed. The resulting time-
strain curves and damage historics are presented
and compared with experimental data in Fig. 3. For
comparison, the same examples were solved without
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Fig. 3. Time histories of strain and damage for the creep test at 982°C under siress of 215 MPa-experimental
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Fig. 4. Comparison of models with damage and without damage modeling. Time histories of strain for

the creep test at 982°C under stress of 215 MPa.
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damage modeling. The results of these comparisons
are presented in Fig. 4.

The following conclusions can be drawn from
this example and other tests shown in Ref. [17]:
(1) the damage evolution models describe correctly
the tertiary creep zone and tramsition to rupture;
(2) the evolution of damage and rupture time are
extremely sensitive to the stress level—small variation
of stress or material constants for damage cause
considerable change in the rupture time. A more
extensive study of this issue is presented in Ref. [17});
(3) the actual rupture of the experimental specimen
occurs at damage levels smaller than the theoretical
rupture condition (w =1). This is most probably
caused by the fact that local damage concentrations,
say on material inhomogeneities, cause localized

", Material: B1900 + Hf
/ // Temperature: 1000° C

growth of continuum damage, transition to macro-
cracks, and their propagation before a uniform satur-
ation of the whole cross-section with micro-cracks
can occur; (4) without damage modeling, the tertiary
creep zone and rupture of the material are not
predicted by the viscoplastic constitutive theories—
thus damage modeling is necessary to capture these
phenomena.

5.2. L-shaped domain

A plane stress L-shaped domain subjected to pre-
scribed displacement rates is presented as an example
of a mesh-adaptive isothermal analysis with damage
modeling (Fig. 5). In particular, displacements on
boundary segments indicated in Fig. 5 grow during
10s to a value of —0.001, and then are held steady

uw, =-0.001
Problem statement: _ _ _ .
T
0.1m
X
* Y
y *u}' =-0.001
* 0.lm
\
x v X
| | | ~
' 0lm ' 0lm ! //
Load history:
'\ displacement
0.0011
. : } — time
10 1000

Fig. 5. Problem statement for an L-shaped domain.
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until the final time of 1000 s. The temperature is equal
1000°C, and the material is a superalloy B1900 + HI.
The problem was solved with adaptive mesh refine-
ment. A comparison of initial mesh and the final
adapted mesh is shown in Fig. 6. Contours of stress
intensity and of damage are presented in Fig. 7. As
expected, the adaptive procedure correctly refined the
mesh around the corner singularities. The adapted
mesh identified the maximum damage zone and
predicted a high damage level, @, =0.45. In fact,
the damage zone is so concentrated that initiation
of macro-crack can be predicted here. Although the
location of crack initiation (corner of the L-shaped
domain) is obvious in this test problem, in more
general practical situations the appropriate adaptive
procedure can also correctly identify such cases.

5.3. SSME combustion chamber liner

An adaptive analysis of an clement of the SSME
combustion chamber liner, subjected to thermal and
mechanical loads has been taken as an illustration
of the application of damage modcling to practical
problems in acrospace structures. The problem for
this example is illustrated in Fig. 8. The cross section
of one cell of the linear is almost rectangular, with the
internal coolant passage subjected to a pressure of

P Pl
Fig. 7. Effective stress contours (2) and damage level (b)
for an L-shaped domain-refined mesh.

3900 psi (25.5 MPa). The initial temperature is of the
order of —200°C, with almost uniform distribution
throughout the cross-section. The thermal load history
corresponds to a rapid heating of the liner from the
inside in 55 up to a temperature close to 600°C.
This temperature gradient is held almost constant
for 10s, and then the liner is cooled down in 5s.
An idealization of this history is shown in Fig. 8.

The above problem was solved with boundary
conditions, corresponding to a single cell of an axi-
symmetric liner, as shown in Fig. 9. The initial mesh
for this problem is shown in Fig. 10. Starting from
this mesh, a finite element adaptive procedure gener-
ated the refined mesh, as shown in Fig. 11. As will be
shown later, this mesh correctly identifies regions of
high stress and damage. For this problem, a combin-
ation of internal pressure and temperature gradient
causes an extensive deformation of a bottom wall
shown with exaggerated scale in Fig. 11. The corre-
sponding temperature distribution is shown in Fig. 12
—high gradients are present near the bottom wall of
the cell. The high temperature gradient and internal
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Geometry:

[— 0,028 in

0.00926 in

0.040 in
Material: copper \
Thermal history: \
3
600°C
i 1
] )
) I
-200°C | } [ time (sec)
5 15 20

Fig. 8. SSME combustion chamber liner: problem statement
and simplified thermal load history.
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Fig. 9. Boundary conditions for the combustion chamber
liner.

pressure cause high stress levels and some plastic
deformation of the bottom wall as shown in Figs. 13
and 14. Due to the mostly compressive nature of
stresses at this stage, damage development is very
low and does not exceed @ = 10~7 at the end of the
heating period.

During a cooling phase the situation is generally
reversed—due to the specific boundary conditions
and the plastic yield which occurred during heating,
high tensile stresses develop in the bottom wall of the
cell. The deformed configuration at the end of the
cooling period is shown in Fig. 15. One can observe
a thinning of the bottom wall caused by a combin-
ation of tensile stresses and internal pressure. The
distribution of stresses at the end of the cooling
period is shown in Fig. 16 and the corresponding
principal plastic strain is illustrated in Fig. 17. In the
cooling phase, the damage development is accelerated

Fig. 10. SSME liner-initial mesh.

FORNLE SRID

Fig. 11. SSME liner-deformed configuration at the end of
the heating period: ¢ = 15 seconds.

in the bottom wall—the corresponding distribution
of damage is shown in Fig. 18.

To better illustrate the development of the damage
pattern, histories of damage for the inner lower
corner and for the center of lower face of the cell are
shown in Fig. 19. It can be seen that damage develop-
ment is indeed accelerated during the cooling phase.
One can expect that further damage will evolve in the
consecutive cycles of heating—cooling. This example
clearly illustrates the potential of adaptive finite
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Fig. 13. SSME lincr-distribution of stress intensity at theend  Fig. 15. SSME liner-deformed configuration at the end of
of the heating period: ¢ = 15 seconds.

the cycle: ¢ = 20 seconds.
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Fig. 17. SSME liner-distribution of principal plastic strain
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clement methods in the identification of critical zones
and damage patterns of aerospace structures.

6. CONCLUSIONS

The formulations and results presented in this
paper clearly confirm the feasibility of developing
adaptive finite clement methods for modeling damage
evolution and for making life predictions of high-
temperature structures.

The error estimation and adaptive mesh refinement
not only provide accuracy control and an optimal
solution at a minimum cost, but are also capable of
pinpointing locations, where concentrated continuum
damage growth leads to initiation of macro-cracks.

Similarly, the adaptive time-stepping guarantees
error control and optimal adjustments of time steps,
with the actual values of the time steps often varying
by the factors of 1000 depending on the evolution of
the nonlinear deformation in the structure.
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As far as damage modeling is concerned, the
following remarks are applicable: (1) while theoretical
formulations of the damage modeling are presently
quite mature, the number of reliable experimental
studies dedicated to the determination of material
constants and the verification of theory is still very
limited. (2) The rate of continuum damage develop-
ment is very sensitive to the temperature and the
stress level—a small variation of these parameters
leads to considerable changes in the predicted time to
rupture. This sensitivity emphasizes the importance
of an accurate prediction of the stresses by the
application of error estimation and mesh refinement.
(3) This paper addressed only the low-cycle damage
development, wherein rupture happens after a
relatively short time, and the damage parameter can
be effectively integrated as a function of time. (4) For
many practical applications it is also important to
consider high-cycle damage, wherein it is much more
efficient to integrate damage over the number of cycles,
rather than directly over time. The extrapolation
techniques are useful in cases of long-term damage
evolutions.
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